The End of the Entrepreneur: The Steps We Must Take to Build a Better Future
How do we empower better product design and manufacturing? What does it look like in reality, and how do we make it possible? We outline three first steps.
What does the ‘Age of the Engineer’ – the term I use to describe our need to empower better product design and manufacturing – look like in reality, and how do we make it possible? I see three first steps:
Getting engineers back into the boardroom
I’ve talked before about entrepreneurs as the ‘villain’ of this narrative because it simplifies the framing. However, it might be better in this instance to specify that I’m talking about a non-founding CEO. As a company grows the need for a generalist – a safe pair of hands – arises. There are many benefits to that approach, of course, but too often the spark is lost – the company stops building great things, and the focus shifts to managing what it does well. We’re in need of something else now – we need to rebuild our products and the infrastructure we use to make and utilize them. We need builders. The founders and early engineers of some of our greatest companies were – and still are – engineers by trade and I think it’s time we put them back in the boardroom. For those starting out, my recommendation is to give their technology leader a seat at the board.
Why? My contention is that businesses who want to succeed in a future likely to be defined by seismic change need to spend more time on innovation-led growth than most large enterprises do now. This requires a different mindset towards risk and reward and one can only achieve that through a voice being present at the highest levels of decision making. A overarching vision of what is possible and the technical understanding of how to achieve it results in speed of execution and that combination is often found with engineering leaders. In business, speed is everything and businesses that do this will innovate out of their current situation faster and more successfully.
Adding sustainability as a core metric to product design
A company is its products. If we want to build more successful companies of the future, we’ll need them to have great products that are sustainable. That is not possible unless we embed sustainability into design, just as we do performance, risk and cost.
Every company is different and even within a company, different product lines may cater to different market segments with different preferences. There are no perfect products because there are no perfect customers or infrastructure to build or use these products, so there will always be trade-offs. I do believe, however, that unless these trade-offs are made consciously, products will continue to diverge from sustainability. This will create a widening gap to market requirements.
I’m already seeing advanced organizations who are most of the way there. They’re what we might call ‘mature’ in their approach, set apart from the ‘novices’ because they have made sustainability a design parameter. For them it is another metric, defined by a series of non-negotiable targets that must be hit in order to unlock the rewards – from growth in new markets to better productivity and efficiency to how people are compensated.
Integrating data and enriching operational systems with it
When it comes to engineering, we don’t need to be doing the same things faster. We need to be doing them better. And to do things better, we don’t need more data – we need smarter data.
Our observations show that up to 90% of the data required to understand how to make and sell products doesn’t sit within a company’s systems. The reason for that is that most products are increasingly becoming “assemblies” with large portions being built in complex upstream supply chains. An average car for example has 70% of its components built in this way. Use and End-of-Life data also typically do not sit in company systems. How could one understand the cost, risk or sustainability impacts from these stages? The solution is to collect and combine this “value chain” information from external sources with company data about the product and operations to allow for full-life-cycle view of the implications of design across all the key design criteria. I call this product lifecycle intelligence.
But it doesn’t stop there. This enriched information needs to be available not in data lakes, expert systems and BI tools, but in operational systems like CAD, PLM and ERP so that engineers can use this information in trade-off analysis, within their existing workflows. This “shifting left” of data and insight, to have it available early on and at every stage of the development process, has long been known to reduce development time and avoid costly mistakes. Technology now allows for this.
Conclusion
The ‘Age of the Engineer’ signifies a pivotal transformation in how we approach innovation and sustainability in business. By reinstating engineers into the boardroom, we leverage their unique expertise to drive not just technological advancements but strategic decisions that prioritize long-term value over short-term gains. By integrating comprehensive data into operational systems to enhance decision-making and efficiency, we will empower businesses to build smarter, more sustainable products that meet the demands of a rapidly changing world.
The ‘Age of the Engineer’ is not just an ideal; it is an imperative, charting a course towards a future where technological prowess and sustainability go hand in hand. By giving engineers the spotlight, and by doubling down on sustainable practices, we’re no longer dreaming about a better tomorrow – we’re actively creating it.
This article first appeared on Forbes.com.